You are here

Alternative splicing of the Snap23 microexon is regulated by MBNL, QKI, and RBFOX2 in a tissue-specific manner and is mis-spliced in striated muscle diseases

Authors: 
Gentile GM, Blue RE, Goda GA, Guzman BB, Szymanski RA, Lee EY, Engels NM, Hinkle ER, Wiedner HJ, Bishop AN, Harrison JT, Zhang H, Wehrens XHT, Dominguez D, Giudice J
Citation: 
RNA Biol. 2025 Apr 10. doi: 10.1080/15476286.2025.2491160. Epub ahead of print. PMID: 40207498
Abstract: 
The reprogramming of alternative splicing networks during development is a hallmark of tissue maturation and identity. Alternative splicing of microexons (small, genomic regions ≤ 51 nucleotides) functionally regulate protein-protein interactions in the brain and are mis-spliced in neuronal diseases. However, little is known about the regulation and function of alternatively spliced microexons in striated muscle. Here, we investigated alternative splicing of a microexon in the synaptosome-associated protein 23 (Snap23) encoded gene. We found that inclusion of this microexon is developmentally regulated and tissue-specific, as it occurs exclusively in adult heart and skeletal muscle. The alternative region is highly conserved in mammalian species and encodes an in-frame sequence of 11 amino acids. Furthermore, we showed that alternative splicing of this microexon is mis-regulated in mouse models of heart and skeletal muscle diseases. We identified the RNA-binding proteins (RBPs) quaking (QKI) and RNA binding fox-1 homolog 2 (RBFOX2) as the primary splicing regulators of the Snap23 microexon. We found that QKI and RBFOX2 bind downstream of the Snap23 microexon to promote its inclusion, and this regulation can be escaped when the weak splice donor is mutated to the consensus 5' splice site. Finally, we uncovered the interplay between QKI and muscleblind-like splicing regulator (MBNL) as an additional, but minor layer of Snap23 microexon splicing control. Our results are one of the few reports detailing microexon alternative splicing regulation during mammalian striated muscle development.
Epub: 
Not Epub
Organism or Cell Type: 
C2C12 myoblast cells
Delivery Method: 
electroporation