You are here

ALK4 functions as a receptor for multiple TGFbeta-related ligands to regulate left-right axis determination and mesoderm induction in Xenopus

Authors: 
Chen Y, Mironova E, Whitaker LL, Edwards L, Yost HJ, Ramsdell AF
Citation: 
Dev Biol. 2004 Apr 15;268(2):280-94
Abstract: 
In Xenopus, several TGFbetas, including nodal-related 1 (Xnr1), derriere, and chimeric forms of Vg1, elicit cardiac and visceral organ left-right (LR) defects when ectopically targeted to right mesendoderm cell lineages, suggesting that LR axis determination may require activity of one or more TGFbetas. However, it is not known which, if any, of these ligands is required for LR axis determination, nor is it known which type I TGFbeta receptor(s) are involved in mediating left-side TGFbeta signaling. We report here that similar to effects of ectopic TGFbetas, right-side expression of constitutively active activin-like kinase (ALK) 4 results in LR organ reversals as well as altered Pitx2 expression in the lateral plate mesoderm. Moreover, left-side expression of a kinase-deficient, dominant-negative ALK4 (DN-ALK4) or an ALK4 antisense morpholino also results in abnormal embryonic body situs, demonstrating a left-side requirement for ALK4 signaling. To determine which TGFbeta(s) utilize the ALK4 pathway to mediate LR development, biochemical and functional assays were performed using an Activin-Vg1 chimera (AVg), Xnr1, and derriere. Whereas ALK4 can co-immunoprecipitate all of these TGFbetas, including endogenous Vg1 protein from embryo homogenates, functional assays demonstrate that not all of these ligands require an intact ALK4 signaling pathway to modulate LR asymmetry. When AVg and DN-ALK4 are co-expressed, LR defects otherwise induced by AVg alone are attenuated by DN-ALK4; however, when functional assays are performed with Xnr1 or derriere, LR defects otherwise elicited by these ligands alone still occur in the presence of DN-ALK4. Intriguingly, when any of these TGFbetas is expressed at a higher concentration to elicit primary axis defects, DN-ALK4 blocks gastrulation and dorsoanterior/ventroposterior defects that otherwise occur following ligand-only expression. Together, these results suggest not only that ALK4 interacts with multiple TGFbetas to generate embryonic pattern, but also that ALK4 ligands differentially utilize the ALK4 pathway to regulate distinct aspects of axial pattern, with Vg1 as a modulator of ALK4 function in LR axis determination and Vg1, Xnr1, and derriere as modulators of ALK4 function in mesoderm induction during primary axis formation.
Organism or Cell Type: 
Xenopus
Delivery Method: 
Microinjection